

EQM-49/H8

Carbon Nano Gel Battery

The state of the s

Features:

Carbon Nano Tube - Ultra energy efficiency due to low resistance

Solid Silica Gel Electrolyte (25% more Electrolyte)

Up to 2 x Faster charging – allows for opportunity charging

PSOC operation – between 40% - 90% SOC

High Specification Materials

Maintenance Free - no topping up required

98% Manufactured Material is recycled

Robust Construction - Vibration resistant

Cycle Life - up to 1500 cycles (EQM) & up to 2000 cycles (LFT)

Design life 12-15 years

High Starting Power

Applications:

Ocean & offshore:

River

Inland waterways

Electric Propulsion

RV

Motorhome & Caravan

All off grid applications:

Utility vehicle

Vehicle conversions

Ambulances & blue light

Solar & renewable energy storage systems

CCTV

Lighting

Traffic Management

Mobility

Benefits:

- · Cost savings due to increased efficiency in charging
- Reduced Temperature gives longer life
- Long life, high reliability
- Reduces drying out extends life
- Sulphation reduction, less need to top charge
- Can be installed in tight spaces
- Almost Totally Green-recycled-scrap value
- Reduced premature failure, extended life
- Suitable for extreme temperature variants

Electrical Specifications

Voltage	12V		
M.R.C. 25 Amps	155		
80% DOD Voltage Cutoff	11.2V		
Low Voltage Cutoff	10.8V		
Self Discharge	Less than 3% per month (20°C/68°F)		
Charge Temperature	Min: -10°C (14°F) / Max: 50°C (122°F)		
Discharge Temperature**	Min: -40°C (-40°F) / Max: 50°C (122°F)		
Storage	Min: -20°C (-4°F) / Max: 60°C (140°F)		

Cell Type Ue	C5	C10	C20	C100
(100%) / VPC	1.70	1.75	1.75	1.80
Ref Temp	25°C	25°C	25°C	25°C
EQ-49/H8	73	77	81	85

** CAUTION: Depths of discharge, operating voltages and currents, when designing systems for use at maximum temperatures, will vary.

Mechanical Specifications

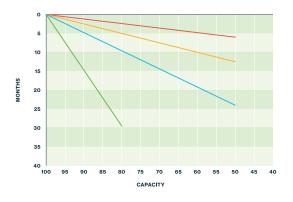
Industry Reference	L5		
Length (A)	13.8 in	350 mm	
Width (B)	6.9 in	175 mm	
Height (C)	7.5 in	190 mm	
Weight	62 lbs	28 kgs	
O°C MCA (EN)	640		
Terminal (Opt'l)*	A-POLE		
Cell(s)	6		
Electrolyte	Gel		
Terminal Torque Nm	n/a		

NOTE: There is a tolerance of +/-2%.

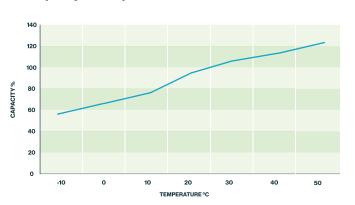
Charging profile

IU Charging $I = min. 12\% C_5 max. 30\% C_5$

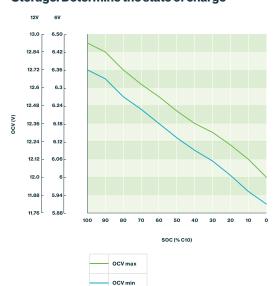
U = 2.4 V per cell

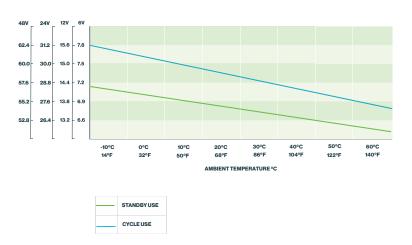

IUI Charging $I_1 = min. 12\% C_5 max. 40\% C_5$

 $U = 2.35 \, \text{V} \, \text{per cell}$


 $I_2 = 1.5 \% C_5$ for max. 4 hours

Select either AGM or GEL setting (GEL setting does increase lifespan)


Self discharge at different temperatures


Capacity vs. temperature

Storage: Determine the state of charge

Relation between charging, voltage and temperature

